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ABSTRACT 
A difficulty encountered when performing Fitness-for-

Service assessments for layered pressure vessels (LPVs) is the 
lack of stress intensity factor solution in literature that produce 
accurate results for inner layer longitudinal through cracks. 
Using surrogate solutions such as a through crack in a plate or 
cylinder produce results that can be overly conservative 
especially for longer cracks. This is largely due to the ability of 
a layered pressure vessel to redistribute hoop load to other 
layers, the restricted radial movement of the cracked layer, and 
the friction forces applied in the cracked region. 

To understand this problem, a parametric finite element 
model (FEM) generator was developed that is capable of 
producing layered pressure vessel models with inner layer 
through cracks. The results from the FEMs were used to create a 
dataset of inner layer through crack stress intensity factors (KI) 
for layered pressure vessels corresponding to variations of 
internal pressure, radius, layer thicknesses, friction factor, and 
crack length. The elastic modulus of the material also has an 
effect on KI but, for this dataset, the elastic modulus was fixed at 
the typical value for steel - 29,500 ksi (203 GPa).  

Finally, a non-dimensional model was developed and 
calibrated using the dataset. This allows KI to be calculated 
without the need of a FEM using a closed-form equation. The 
results of the closed-form solution were then compared to FEM 
results showing accuracy was generally within 10%. 

NOMENCLATURE 
α dimensionless term for frictionless model 
β stress correction non-dimensional term 
c half crack length 
Ɣ boundary correction factor 

1 Contact author: joel.r.hobbs@nasa.gov 

Ɣfrictionless correction factor for frictionless model 
Ɣfriction correction factor for friction model 
E elastic modulus 
FEA finite element analysis 
FEM finite element model 
ILLTC inner layer longitudinal through crack 
KI stress intensity factor 
LPV layered pressure vessel 
MLTC monocoque longitudinal through crack 
µ static friction factor 
ν Poisson’s ratio 
∏1 dimensionless term for friction model 
R inner layer middle radius 
r inner layer external radius 
ri internal radius 
ro external radius 
t total shell thickness 
t1 inner layer thickness 
t2 total wrapper layer thicknesses 

INTRODUCTION 
 The National Aeronautics and Space Administration 
(NASA) has a large fleet of layered pressure vessels (LPVs) 
currently in use, most built in the 1960's before design and 
construction standards were incorporated into the ASME Boiler 
and Pressure Vessel Code [1]. To insure continued safe operation 
(Fitness-for-Service) of these vessels, a comprehensive effort has 
been undertaken by NASA to develop an understanding of the 
behavior of these structures. As part of this effort, stress intensity 
factors of longitudinal through-cracks located in LPV inner 
layers were studied. 
 Currently, there is very little of research in the development 
of stress intensity factor solutions for cracks in LPV layers. 

https://ntrs.nasa.gov/search.jsp?R=20190030374 2020-05-09T23:11:31+00:00Z
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Wang et. al. [2] investigated the effects of full-length cracks in 
wrapper layers on the redistribution of stress. A key finding from 
their research was that friction between wrapper layers allows 
stress redistribution to such a degree that LPV’s have a “self-
rescue” capacity. While the inner layer has only one surface in 
contact versus two for wrapper layers, a significant amount of 
hoop stress is still shed to the first wrapper layer.
 A set of best practices for finite element modeling of LPVs 
was developed by Seipp et. al. [3]. Two of their main suggestions 
were to include gaps between layers and accounting for the full 
loading history (hydrostatic, design, and operating pressures) for 
elastic plastic models. When an elastic plastic model is used, 
plastic deformation of the layers results in smaller gaps between 
layers. Since the material model used in this work is linear 
elastic, the loading history has no effect. The stress induced by 
plastic deformation during pressure loading can be accounted for 
using super position. Also, as a idealization, this work assumes 
the gaps are initially in a closed state.  
 Stress intensity factor (KI) calculation is a fundamental 
component in the fitness-for-service evaluation of pressure 
vessels. While it is always possible to use computational 
methods such as finite element analysis (FEA), it is much more 
common to use closed-form KI solutions. The general form for 
calculating KI is: 

𝐾# = 𝛶𝜎√𝜋𝑐	 	(1) 

where 𝜰 is the boundary correction factor, c is the characteristic 
crack length, and 	𝝈 is the far-field stress.  
 For monocoque vessels, there are a number of solutions 
available in literature. For example, a very commonly used KI 
solution was developed by Newman [4] for longitudinal through 
cracks in monocoque cylindrical pressure vessels. The Newman 
solution develops a correction factor based on a dimensionless 
parameter: 

𝝀𝒕 =
𝒄
√𝑹𝒕

	(𝟐) 

for 𝟎 ≤ 𝝀𝒕 ≤ 𝟏𝟎 where 𝑹 is the average radius, 𝒕 is the shell 
thickness, and c is the crack half-length. The correction factor for 
a monocoque longitudinal through crack (MLTC) is calculated 
by the following expression: 

𝛶89:; = <1 − 0.52𝜆C + 1.29𝜆CF − 0.074𝜆CI				(3) 

Difficulties arise in applying Newman’s MLTC solution to 
LPV Inner Layer Longitudinal Through Cracks (ILLTCs). First, 
the Newman solution is for thin-walled vessels whereas LPV are 
commonly thick-walled vessels with 𝑅/𝑡 < 10. Second, out-of-
plane (bulge) deformation along the crack length in MLTCs is 
limited in ILLTCs by the wrapper layers. Third, the Newman 

model does not account for friction forces which develop at the 
interface between the inner layer and first wrapper layer.  

Another approach calculates KI using the infinite flat-plate 
through-crack solution by assuming the boundary correction 
factor (𝛶) is 1.0. However, it does not reflect the cylindrical 
geometry, layers, or friction between the layers. 

Finite element analysis of one of NASA’s LPVs, V32  (see 
Table 1) shows the applicability of these two approximate KI 
solutions. Figure 1 compares KI predictions as crack length (2c) 
increases from 1 in (25.4 mm) to 20 in (508 mm) assuming 
frictionless contact: 

FIGURE 1:  V32 FEM RESULT VERUS EXISITING 
CLOSED-FORM SOLUTIONS 

Results from the MLTC model and FEM models agree for cracks 
less than 4 in (102 mm) for this vessel geometry. For large 
cracks, the MLTC model becomes very conservative. The flat 
plate and FEM solutions have a similar shape but the flat plate 
always under predicts KI. 

Neither closed-form model includes friction effects. Friction 
causes traction forces to develop between inner and first wrapper 
layer along crack front thereby reducing KI. Figure 2 compares 
FEM KI result versus crack length for four static friction 
coefficients (µ=0, 0.3, 0.6, 0.8). 
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FIGURE 2:  V32 FRICTION EFFECT ON KI 

VALUES FROM FEM 
 
Based on these results, the geometry and friction in the 

layered construction have a significant effect on KI values. This 
work describes a set of parametric finite element analyses of such 
LPVs and development of closed-form solutions for KI. 
 
 
ASSUMPTIONS 

The assumptions used in this analysis are: 
  
• Material of construction is steel. 

- Solutions are dependent on material properties. All 
models use E=29,500 ksi (203 GPa) and ν=0.3. 

- Material model is linear elastic. 
• Circumferential welds are not included.  

- Circumferential welds join cylindrical LPV 
sections. Cracks here are located away from these 
welds.  

• No longitudinal welds connect layers. 
- As wrapper layers are added in construction of 

LPVs, the prior layer serves as a backer for 
longitudinal seam welds for the subsequent layer. 
This adds some additional circumferential stiffness 
and reduces KI values. These welds are not 
included here.  

• No gapping between layers. 
- Sections are idealized as perfect cylinders with no 

gapping between vessel layers. 
 
 
LAYERED PRESSURE VESSEL GEOMETRIES 

Four vessel geometries from NASA’s LPV fleet of more 
than 300 vessels were selected for this study. These vessels 
represent a range of radii, pressures, and layer counts. For all 
cases, the wrapper layers have a uniform thickness. Figures 3 and 

4 show schematics of the geometry. The total of all wrapper layer 
thicknesses is denoted by t2. 

 

 
 
FIGURE 3: MODEL SCHEMATIC 
 
 

 
 
FIGURE 4: MODEL CROSS SECTION 
 
TABLE 1a: VESSEL DETAILS (ENGLISH UNITS) 

Parameter 
Vessel Name 

N-32-S V32 V12 V256 
t1, in 0.5 0.5 0.47 0.47 
t2, in 0.5 1.25 2.77 3.66 

Wrapper Count 2 5 10 13 
ri, in 12.0 10.0 29.0 30.125 
W, in 20 20 20 20 
pi, ksi 2.8 5.5 3.14 5.0 
E, ksi 29,500 
ν 0.3 

 
 
TABLE 1b: VESSEL DETAILS (SI UNITS) 

Parameter 
Vessel Name 

N-32-S V32 V12 V256 
t1, mm 12.7 12.7 11.9 11.9 
t2, mm 12.7 31.8 70.4 93.0 

Wrapper Count 2 5 10 13 
ri, mm 305 254 735 765 
W, mm 508 508 508 508 
pi, MPa 19.3 38 21.7 34.5 
E, GPa 203 
ν 0.3 
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FINITE ELEMENT MODEL GENERATOR 
Layered pressure vessels are geometrically more complex 

than monocoque vessels. Developing LPV FEMs over a large 
range of radii, shell thicknesses, pressures, and crack sizes 
becomes challenging. This large parameter set was effectively 
addressed by developing an ABAQUS FEM generator in using 
the ABAQUS-Python interface [5].  

The FEM loading is driven solely by internal pressure. 
Application of secondary stresses, such as weld residual stresses, 
can be incorporated in the closed-form solution detailed later in 
this paper. 

Thrust forces are applied to the circumferential boundaries. 
Figures 5 and 6 show examples of the FEMs containing 
longitudinal through cracks. 

 
 
FIGURE 5: TYPICAL FINITE ELEMENT MODEL 
 

 
 
FIGURE 6: CRACK MESH (SHOWING INNER 

LAYER ONLY) 

EFFECTIVE STRESS 
 In gapless, unflawed LPVs, the through-thickness hoop 

stress is calculated using Lamé’s equations for thick-walled 
pressure vessels. The average through-thickness stress in the 
inner layer (𝜎O) and the conglomeration of the outer layers (𝜎F) 
can then be derived: 

 

𝜎O =
𝑝Q𝑟Q

(𝑟SF − 𝑟QF)
∗
(𝑟SF + 𝑟𝑟Q)

𝑟 																		 (4) 

	

𝜎F =
𝑝Q𝑟QF

(𝑟SF − 𝑟QF)
∗
(𝑟S + 𝑟)

𝑟 																				 (5)	
 
 
Effective Stress without Friction 

For frictionless contact between layers, the stiffness of the 
wrappers limits the radial (bulging) deformation along the crack. 
This causes loading to transfer increasingly to the wrapper layers 
as crack length increases thereby driving layer stress below 𝜎O. 
The reduction factor is the ratio of the average hoop stress in the 
cracked model, determined by FEA, to the nominal hoop stress, 
𝜎O. Varying the FEM parameters shows that the scaling factor is 
a function of crack length (c), internal radius (r1), inner layer 
thickness (t1), and section length (W):  

 
𝜎UVV,VXQYCQSZ[U\\

𝜎O
= 𝑓(𝛽)																			(6) 

                   
𝛽 =

𝑐
√𝑅𝑊Fa 																															 (7) 

 
where 𝑅 = 𝑟Q + 𝑡O/2 and 𝜎UVV,VXQYCQSZ[U\\ is the effective inner 
layer hoop stress with the bulging effects included.  

Determining the function 𝑓(𝛽) requires FEA results which 
vary the parameters in	𝛽. Using the FEM generator, a series of 
35 FEMs were generated for the four representative vessel 
designs. Additionally, a long variety was added which have 
double the W value listed in Table 1. Figure 7 shows the 
reduction factor versus 𝛽 for all models. 
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FIGURE 7: REDUCTION FACTOR VS. 𝜷 
 

Fitting the data above yields the following stress scaling factor:  
 

𝑓(𝛽) = 1.01 − 0.1341β − 1.0607𝛽F							(8) 
 

This scaling factor 𝑓(𝛽)  is specific to materials with elastic 
moduli at or near that of steel - 29,500 ksi (203 GPa) and ν=0.3. 
 
Effective Stress with Friction 

When friction is included, load transfer between the layers 
is dominated by the generated surface tractions which suppress 
crack opening displacements. Calculation of the effective stress 
in the inner layer with friction (𝜎UVV,eXQYCQSZ) requires wrapper 
layer stress (𝜎F) and thicknesses: 

 

𝜎UVV,eXQYCQSZ =
𝑡O𝜎O + 𝑡F𝜎F
𝑡O + 𝑡F

																	 (9) 
 
As will be seen, the magnitude of the normal (radial) stress 

at the interface between the inner and first wrapper layer is also 
required for the closed-form KI expression.   

 

𝜎ZSXf = g
𝑝Q𝑟QF

𝑟SF − 𝑟QF
h1 −

𝑟SF

𝑟F
ig 										(10) 

 
 
STRESS INTENSITY FACTORS 

Rearranging Eq.(1) allows the correction factor to be 
calculated from KI output by the FEA as a function of crack 
length and effective stress: 

 

𝛶 =
𝐾#

𝜎UVV√𝜋𝑐
																									(11)	

 

Extensive FEAs performed over LPV geometries enabled 
the development of expressions for 𝛶. Once the key parameters 
were identified, a Buckingham Pi analysis was performed to 
determine dimensionless parameters and final KI expression.  

 
Stress Intensity Factors without Friction 

The sensitivity and Buckingham Pi analysis for the 
frictionless model yielded a unitless parameter that is a function 
of the geometry and crack length: 
 

𝛼 =
𝑐

<(𝑡O + 𝑡F) k𝑅 +
𝑡F
2l
																(12)	

 
Figure 8 shows the relationship between 𝛼 and  

𝛶VXQYCQSZ[U\\ . 
 

 
 
FIGURE 8: FRICTIONLESS CONTACT 

CORRECTION FACTOR VS. 𝜶 
 

The data is then fitted by: 
 
𝛶VXQYCQSZ[U\\ = 1.035 + 0.304𝛼 − 0.0363𝛼F		(13) 
 

where 0 ≤ 𝛼 ≤ 3.0 , 𝑐/𝑊 ≤ 0.25 , 𝜈 = 0.3 , and 𝐸 =
29,500	𝑘𝑠𝑖  (203	𝐺𝑃𝑎) . The curve fit is biased towards the 
higher correction factors to ensure conservative estimates of KI.   
 
Stress Intensity Factors with Friction 

The sensitivity and Buckingham Pi analysis for the model 
with friction yielded a unitless parameter 𝛱O that is a function 
of the geometry, crack length, friction factor, and normal stress: 
 

𝛱O = w
𝑡F

𝑡O(𝑡O + 𝑡F)
𝑐F

𝑐XUV
∗
𝜇𝜎ZSXf
𝜎XUV

									(14) 
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where 𝑐XUV = 1	𝑖𝑛	(25.4	𝑚𝑚) and 𝜎XUV = 1	𝑘𝑠𝑖	(6.89	𝑀𝑃𝑎). 

FEA was used to generate KI values for four LPV designs, 
3 friction factors, and six crack length at various internal 
pressures for a total of seventy-two solutions. Figure 9 shows 
𝛱O versus  𝛶VXQYCQSZ  for all models. 

 
 
FIGURE 9: CORRECTION FACTOR VS. 𝜫𝟏 

 
Equation 15 is a third-order polynomial curve fit of the data in 
Fig. (9). 
 

𝛶VXQYCQSZ = 1.11 − 0.0688 ∗ ΠO + 
					2.74 ∗ 10~I ∗ 	ΠOF −            (15) 
													4.28 ∗ 10~� ∗ 	ΠOI 

 
where	𝛱O ≤ 30, 𝜈 = 0.3, and 𝐸 = 29,500	𝑘𝑠𝑖 (203	𝐺𝑃𝑎). 
 
 
EVALUATION OF KI EXPRESSIONS 

The closed-form KI expressions were checked by comparing 
their values to the finite element results using Eq.(16). 

  

%	𝑜𝑓	𝐹𝐸𝑀	𝑟𝑒𝑠𝑢𝑙𝑡 =
𝐾#,;[S\U�-eSXf	8S�U[

𝐾#,e�8
				(16) 

 
In Tables 2-5, cells are filled green when the through-

thickness average KI is within ±10% of the FEM value, red when 
below 90% of the FEM value, and blue when above 110% of the 
value.  

 

TABLE 2: N-32-S Closed-Form Model Divided by FEM 
Results 

2c, in (mm) µ =0.0 µ =0.8 µ =0.6 µ =0.3 
1 (25.4) 1.05 1.02 1.01 1.01 
4 (102) 1.01 1.01 0.98 0.94 
8 (203) 0.98 1.01 0.97 0.90 
12 (305) 0.99 1.02 0.99 0.90 
16 (406) 1.00 1.02 0.99 0.91 
20 (508) 0.97 1.00 0.99 0.91 

 
 
TABLE 3: V32 Closed-Form Model Divided by FEM 
Results 

2c, in (mm) µ =0.0 µ =0.8 µ =0.6 µ =0.3 
1 (25.4) 1.05 0.98 0.97 0.97 
4 (102) 1.05 1.03 1.01 0.97 
8 (203) 1.07 1.04 1.03 0.98 
12 (305) 1.10 1.03 1.03 0.99 
16 (406) 1.12 1.02 1.02 0.98 
20 (508) 1.12 1.01 1.01 0.98 

 
 

TABLE 4: V12 Closed-Form Model Divided by FEM 
Results 

2c, in (mm) µ =0.0 µ =0.8 µ =0.6 µ =0.3 
1 (25.4) 1.04 0.99 0.99 0.99 
4 (102) 1.06 1.03 1.02 1.00 
8 (203) 1.06 1.04 1.03 0.99 
12 (305) 1.06 1.03 1.02 0.97 
16 (406) 1.05 1.02 1.00 0.96 
20 (508) 1.03 1.01 0.99 0.94 

 
 
TABLE 5: V256 Closed-Form Model Divided by FEM 
Results 

2c, in (mm) µ =0.0 µ =0.8 µ =0.6 µ =0.3 
1 (25.4) 1.04 0.99 0.99 0.99 
4 (102) 1.06 1.03 1.02 1.00 
8 (203) 1.06 1.04 1.03 0.99 
12 (305) 1.06 1.03 1.02 0.97 
16 (406) 1.05 1.02 1.00 0.96 
20 (508) 1.03 1.01 0.99 0.94 

 
 

SUMMARY 
Finite element analyses demonstrate that existing, 

longitudinal through-crack solutions for monocoque pressure 
vessels do not produce realistic stress-intensity factors (KI) for 
cracks in LPVs. Friction plays a dominant role in reducing the KI 
values for longer cracks.   
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A closed-form expression for stress intensity factors is 
presented for inner layer, longitudinal through cracks in steel 
LPVs.  This was developed using a combination of dimensional 
analysis and finite element analysis. Solutions are given for both 
friction and frictionless conditions. Seventy-two FEAs 
representing a combinations of vessel designs, crack lengths and 
friction factors were compared to the closed-form expression. 
The results show the closed-form model is slightly conservative 
on average (101%) without producing excessively conservative 
(max 112%) or un-conservative (min 90%) estimates of KI. 
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